ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 1 | #' Makes a single completion request to the GPT-3 API |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 2 | #' |
| 3 | #' @description |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 4 | #' `gpt3_single_request()` sends a single [completion request](https://beta.openai.com/docs/api-reference/completions) to the Open AI GPT-3 API. |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 5 | #' @details For a general guide on the completion requests, see [https://beta.openai.com/docs/guides/completion](https://beta.openai.com/docs/guides/completion). This function provides you with an R wrapper to send requests with the full range of request parameters as detailed on [https://beta.openai.com/docs/api-reference/completions](https://beta.openai.com/docs/api-reference/completions) and reproduced below. |
| 6 | #' |
| 7 | #' For the `best_of` parameter: When used with n, best_of controls the number of candidate completions and n specifies how many to return – best_of must be greater than n. Note that this is handled by the wrapper automatically if(best_of <= n){ best_of = n}. |
| 8 | #' |
| 9 | #' Parameters not included/supported: |
| 10 | #' - `logit_bias`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias](https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias) |
| 11 | #' - `echo`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo](https://beta.openai.com/docs/api-reference/completions/create#completions/create-echo) |
| 12 | #' - `stream`: [https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream](https://beta.openai.com/docs/api-reference/completions/create#completions/create-stream) |
| 13 | #' |
| 14 | #' @param prompt_input character that contains the prompt to the GPT-3 request |
| 15 | #' @param model a character vector that indicates the [model](https://beta.openai.com/docs/models/gpt-3) to use; one of "text-davinci-002" (default), "text-curie-001", "text-babbage-001" or "text-ada-001" |
| 16 | #' @param output_type character determining the output provided: "complete" (default), "text" or "meta" |
| 17 | #' @param suffix character (default: NULL) (from the official API documentation: _The suffix that comes after a completion of inserted text_) |
| 18 | #' @param max_tokens numeric (default: 100) indicating the maximum number of tokens that the completion request should return (from the official API documentation: _The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096)_) |
| 19 | #' @param temperature numeric (default: 0.9) specifying the sampling strategy of the possible completions (from the official API documentation: _What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. We generally recommend altering this or top_p but not both._) |
| 20 | #' @param top_p numeric (default: 1) specifying sampling strategy as an alternative to the temperature sampling (from the official API documentation: _An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both._) |
| 21 | #' @param n numeric (default: 1) specifying the number of completions per request (from the official API documentation: _How many completions to generate for each prompt. **Note: Because this parameter generates many completions, it can quickly consume your token quota.** Use carefully and ensure that you have reasonable settings for max_tokens and stop._) |
| 22 | #' @param logprobs numeric (default: NULL) (from the official API documentation: _Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact support@openai.com and describe your use case._) |
| 23 | #' @param stop character or character vector (default: NULL) that specifies after which character value when the completion should end (from the official API documentation: _Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence._) |
| 24 | #' @param presence_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness if a token already exists (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 25 | #' @param frequency_penalty numeric (default: 0) between -2.00 and +2.00 to determine the penalisation of repetitiveness based on the frequency of a token in the text already (from the official API documentation: _Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim._). See also: [https://beta.openai.com/docs/api-reference/parameter-details](https://beta.openai.com/docs/api-reference/parameter-details) |
| 26 | #' @param best_of numeric (default: 1) that determines the space of possibilities from which to select the completion with the highest probability (from the official API documentation: _Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token)_). See details. |
| 27 | #' |
| 28 | #' @return A list with two data tables (if `output_type` is the default "complete"): [[1]] contains the data table with the columns `n` (= the mo. of `n` responses requested), `prompt` (= the prompt that was sent), and `gpt3` (= the completion as returned from the GPT-3 model). [[2]] contains the meta information of the request, including the request id, the parameters of the request and the token usage of the prompt (`tok_usage_prompt`), the completion (`tok_usage_completion`) and the total usage (`tok_usage_total`). |
| 29 | #' |
| 30 | #' If `output_type` is "text", only the data table in slot [[1]] is returned. |
| 31 | #' |
| 32 | #' If `output_type` is "meta", only the data table in slot [[2]] is returned. |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 33 | #' @examples |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 34 | #' # First authenticate with your API key via `gpt3_authenticate('pathtokey')` |
| 35 | #' |
| 36 | #' # Once authenticated: |
| 37 | #' |
| 38 | #' ## Simple request with defaults: |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 39 | #' gpt3_single_request(prompt_input = 'How old are you?') |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 40 | #' |
| 41 | #' ## Instruct GPT-3 to write ten research ideas of max. 150 tokens with some controls: |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 42 | #'gpt3_single_request(prompt_input = 'Write a research idea about using text data to understand human behaviour:' |
ben-aaron188 | 5bcd911 | 2022-09-10 21:33:50 +0200 | [diff] [blame] | 43 | #' , temperature = 0.8 |
| 44 | #' , n = 10 |
| 45 | #' , max_tokens = 150) |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 46 | #' |
| 47 | #' ## For fully reproducible results, we need `temperature = 0`, e.g.: |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 48 | #' gpt3_single_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than' |
ben-aaron188 | 5bcd911 | 2022-09-10 21:33:50 +0200 | [diff] [blame] | 49 | #' , temperature = 0.0 |
| 50 | #' , max_tokens = 50) |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 51 | #' |
| 52 | #' ## The same example with a different GPT-3 model: |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 53 | #' gpt3_single_request(prompt_input = 'Finish this sentence:/n There is no easier way to learn R than' |
ben-aaron188 | 5bcd911 | 2022-09-10 21:33:50 +0200 | [diff] [blame] | 54 | #' , model = 'text-babbage-001' |
| 55 | #' , temperature = 0.0 |
| 56 | #' , max_tokens = 50) |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 57 | #' @export |
ben-aaron188 | 2b89c2a | 2022-09-11 16:54:25 +0200 | [diff] [blame] | 58 | gpt3_single_request = function(prompt_input |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 59 | , model = 'text-davinci-002' |
| 60 | , output_type = 'complete' |
| 61 | , suffix = NULL |
| 62 | , max_tokens = 100 |
| 63 | , temperature = 0.9 |
| 64 | , top_p = 1 |
| 65 | , n = 1 |
| 66 | , logprobs = NULL |
| 67 | , stop = NULL |
| 68 | , presence_penalty = 0 |
| 69 | , frequency_penalty = 0 |
| 70 | , best_of = 1){ |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 71 | |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 72 | #check for request issues with `n` and `best_of` |
| 73 | if(best_of < n){ |
| 74 | best_of = n |
| 75 | message('To avoid an `invalid_request_error`, `best_of` was set to equal `n`') |
| 76 | } |
| 77 | |
| 78 | if(temperature == 0 & n > 1){ |
| 79 | n = 1 |
| 80 | message('You are running the deterministic model, so `n` was set to 1 to avoid unnecessary token quota usage.') |
| 81 | } |
| 82 | |
| 83 | parameter_list = list(prompt = prompt_input |
| 84 | , model = model |
| 85 | , suffix = suffix |
| 86 | , max_tokens = max_tokens |
| 87 | , temperature = temperature |
| 88 | , top_p = top_p |
| 89 | , n = n |
| 90 | , logprobs = logprobs |
| 91 | , stop = stop |
| 92 | , presence_penalty = presence_penalty |
| 93 | , frequency_penalty = frequency_penalty |
| 94 | , best_of = best_of) |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 95 | |
| 96 | request_base = httr::POST(url = url.completions |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 97 | , body = parameter_list |
| 98 | , httr::add_headers(Authorization = paste("Bearer", api_key)) |
| 99 | , encode = "json") |
| 100 | |
| 101 | request_content = httr::content(request_base) |
| 102 | |
| 103 | if(n == 1){ |
| 104 | core_output = data.table::data.table('n' = 1 |
| 105 | , 'prompt' = prompt_input |
| 106 | , 'gpt3' = request_content$choices[[1]]$text) |
| 107 | } else if(n > 1){ |
| 108 | |
| 109 | core_output = data.table::data.table('n' = 1:n |
| 110 | , 'prompt' = rep(prompt_input, n) |
| 111 | , 'gpt3' = rep("", n)) |
| 112 | |
| 113 | for(i in 1:n){ |
| 114 | core_output$gpt3[i] = request_content$choices[[i]]$text |
| 115 | } |
| 116 | |
| 117 | } |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 118 | |
| 119 | |
ben-aaron188 | 85c32a0 | 2022-09-10 20:30:30 +0200 | [diff] [blame] | 120 | meta_output = data.table::data.table('request_id' = request_content$id |
| 121 | , 'object' = request_content$object |
| 122 | , 'model' = request_content$model |
| 123 | , 'param_prompt' = prompt_input |
| 124 | , 'param_model' = model |
| 125 | , 'param_suffix' = suffix |
| 126 | , 'param_max_tokens' = max_tokens |
| 127 | , 'param_temperature' = temperature |
| 128 | , 'param_top_p' = top_p |
| 129 | , 'param_n' = n |
| 130 | , 'param_logprobs' = logprobs |
| 131 | , 'param_stop' = stop |
| 132 | , 'param_presence_penalty' = presence_penalty |
| 133 | , 'param_frequency_penalty' = frequency_penalty |
| 134 | , 'param_best_of' = best_of |
| 135 | , 'tok_usage_prompt' = request_content$usage$prompt_tokens |
| 136 | , 'tok_usage_completion' = request_content$usage$completion_tokens |
| 137 | , 'tok_usage_total' = request_content$usage$total_tokens) |
| 138 | |
| 139 | if(output_type == 'complete'){ |
| 140 | output = list(core_output |
| 141 | , meta_output) |
| 142 | } else if(output_type == 'meta'){ |
| 143 | output = meta_output |
| 144 | } else if(output_type == 'text'){ |
| 145 | output = core_output |
ben-aaron188 | 3818e7c | 2022-09-08 17:49:01 +0200 | [diff] [blame] | 146 | } |
| 147 | |
| 148 | return(output) |
| 149 | |
| 150 | } |