blob: 6bce3990e9fd131462a451a9644418e5a661a032 [file] [log] [blame]
ben-aaron188c9254dd2022-09-28 16:33:00 +02001@article{korngiebel2021considering,
2 title={Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery},
3 author={Korngiebel, Diane M and Mooney, Sean D},
4 journal={NPJ Digital Medicine},
5 volume={4},
6 number={1},
7 pages={1--3},
ben-aaron188516e5832022-11-16 00:13:53 +01008 doi = {10.1038/s41746-021-00464-x},
ben-aaron188c9254dd2022-09-28 16:33:00 +02009 year={2021},
10 publisher={Nature Publishing Group}
11}
12
ben-aaron188c9254dd2022-09-28 16:33:00 +020013@article{binz2022using,
14 title={Using cognitive psychology to understand GPT-3},
15 author={Binz, Marcel and Schulz, Eric},
16 journal={arXiv preprint arXiv:2206.14576},
ben-aaron188516e5832022-11-16 00:13:53 +010017 doi = {10.31234/osf.io/6dfgk},
ben-aaron188c9254dd2022-09-28 16:33:00 +020018 year={2022}
19}
20
21@article{stevenson2022putting,
22 title={Putting GPT-3's Creativity to the (Alternative Uses) Test},
23 author={Stevenson, Claire and Smal, Iris and Baas, Matthijs and Grasman, Raoul and van der Maas, Han},
24 journal={arXiv preprint arXiv:2206.08932},
25 year={2022}
26}
27
28@article{garg2018word,
29 title={Word embeddings quantify 100 years of gender and ethnic stereotypes},
30 author={Garg, Nikhil and Schiebinger, Londa and Jurafsky, Dan and Zou, James},
31 journal={Proceedings of the National Academy of Sciences},
32 volume={115},
33 number={16},
34 pages={E3635--E3644},
ben-aaron188516e5832022-11-16 00:13:53 +010035 doi = {10.1073/pnas.1720347115},
ben-aaron188c9254dd2022-09-28 16:33:00 +020036 year={2018},
37 publisher={National Acad Sciences}
38}
ben-aaron188718e3a62022-10-24 14:28:51 +020039
ben-aaron188c9254dd2022-09-28 16:33:00 +020040@inproceedings{bender2021dangers,
41 title={On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?},
42 author={Bender, Emily M and Gebru, Timnit and McMillan-Major, Angelina and Shmitchell, Shmargaret},
43 booktitle={Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency},
44 pages={610--623},
45 year={2021}
46}
47
48@article{dale2021gpt,
49 title={GPT-3: What’s it good for?},
50 author={Dale, Robert},
51 journal={Natural Language Engineering},
52 volume={27},
53 number={1},
ben-aaron188516e5832022-11-16 00:13:53 +010054 doi = {10.1017/s1351324920000601},
ben-aaron188c9254dd2022-09-28 16:33:00 +020055 pages={113--118},
56 year={2021},
57 publisher={Cambridge University Press}
58}
59
60@article{brown2020language,
61 title={Language models are few-shot learners},
62 author={Brown, Tom and Mann, Benjamin and Ryder, Nick and Subbiah, Melanie and Kaplan, Jared D and Dhariwal, Prafulla and Neelakantan, Arvind and Shyam, Pranav and Sastry, Girish and Askell, Amanda and others},
63 journal={Advances in neural information processing systems},
64 volume={33},
65 pages={1877--1901},
66 year={2020}
67}
ben-aaron188718e3a62022-10-24 14:28:51 +020068
ben-aaron188c9254dd2022-09-28 16:33:00 +020069@article{floridi2020gpt,
70 title={GPT-3: Its nature, scope, limits, and consequences},
71 author={Floridi, Luciano and Chiriatti, Massimo},
72 journal={Minds and Machines},
73 volume={30},
74 number={4},
75 pages={681--694},
ben-aaron188516e5832022-11-16 00:13:53 +010076 doi = {10.2139/ssrn.3827044},
ben-aaron188c9254dd2022-09-28 16:33:00 +020077 year={2020},
78 publisher={Springer}
79}
80
ben-aaron188c9254dd2022-09-28 16:33:00 +020081
82@article{rahwan2019machine,
83 title={Machine behaviour},
84 author={Rahwan, Iyad and Cebrian, Manuel and Obradovich, Nick and Bongard, Josh and Bonnefon, Jean-Fran{\c{c}}ois and Breazeal, Cynthia and Crandall, Jacob W and Christakis, Nicholas A and Couzin, Iain D and Jackson, Matthew O and others},
85 journal={Nature},
86 volume={568},
87 number={7753},
88 pages={477--486},
89 year={2019},
90 publisher={Nature Publishing Group}
91}
92
ben-aaron188516e5832022-11-16 00:13:53 +010093@inproceedings{black2022gpt,
94 title = "{GPT}-{N}eo{X}-20{B}: An Open-Source Autoregressive Language Model",
95 author = "Black, Sidney and
96 Biderman, Stella and
97 Hallahan, Eric and
98 Anthony, Quentin and
99 Gao, Leo and
100 Golding, Laurence and
101 He, Horace and
102 Leahy, Connor and
103 McDonell, Kyle and
104 Phang, Jason and
105 Pieler, Michael and
106 Prashanth, Usvsn Sai and
107 Purohit, Shivanshu and
108 Reynolds, Laria and
109 Tow, Jonathan and
110 Wang, Ben and
111 Weinbach, Samuel",
112 month = may,
113 year = "2022",
114 address = "virtual+Dublin",
115 publisher = "Association for Computational Linguistics",
116 url = "https://aclanthology.org/2022.bigscience-1.9",
117 doi = "10.18653/v1/2022.bigscience-1.9",
118 pages = "95--136",
119 abstract = "We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe GPT-NeoX-20B{'}s architecture and training, and evaluate its performance. We open-source the training and evaluation code, as well as the model weights, at https://github.com/EleutherAI/gpt-neox.",
ben-aaron188c9254dd2022-09-28 16:33:00 +0200120}
ben-aaron188718e3a62022-10-24 14:28:51 +0200121
ben-aaron188718e3a62022-10-24 14:28:51 +0200122@article{miotto_who_2022,
123 title = {Who is {GPT}-3? {An} {Exploration} of {Personality}, {Values} and {Demographics}},
124 shorttitle = {Who is {GPT}-3?},
125 url = {http://arxiv.org/abs/2209.14338},
126 doi = {10.48550/arXiv.2209.14338},
127 abstract = {Language models such as GPT-3 have caused a furore in the research community. Some studies found that GPT-3 has some creative abilities and makes mistakes that are on par with human behaviour. This paper answers a related question: who is GPT-3? We administered two validated measurement tools to GPT-3 to assess its personality, the values it holds and its self-reported demographics. Our results show that GPT-3 scores similarly to human samples in terms of personality and - when provided with a model response memory - in terms of the values it holds. We provide the first evidence of psychological assessment of the GPT-3 model and thereby add to our understanding of the GPT-3 model. We close with suggestions for future research that moves social science closer to language models and vice versa.},
128 urldate = {2022-10-03},
129 author = {Miotto, Marilù and Rossberg, Nicola and Kleinberg, Bennett},
130 month = sep,
131 year = {2022},
132 note = {arXiv:2209.14338 [cs]},
133 keywords = {Computer Science - Computation and Language},
134 file = {arXiv.org Snapshot:/Users/bennettkleinberg/Zotero/storage/6NCPEUG4/2209.html:text/html},
135}
136
137@article{shihadehbrilliance,
138 title={Brilliance Bias in GPT-3},
ben-aaron188492669a2022-10-24 19:11:13 +0200139 author={Shihadeh, Juliana and Ackerman, Margareta and Troske, Ashley and Lawson, Nicole and Gonzalez, Edith},
ben-aaron188516e5832022-11-16 00:13:53 +0100140 year={2022},
141 doi={10.1109/ghtc55712.2022.9910995}
ben-aaron188492669a2022-10-24 19:11:13 +0200142}
143
144@article{vandermaas2021,
145 title = {How much intelligence is there in artificial intelligence? A 2020 update},
146 author = {van der Maas, Han L.J. and Snoek, Lukas and Stevenson, Claire E.},
147 year = {2021},
148 month = {07},
149 date = {2021-07},
150 journal = {Intelligence},
151 pages = {101548},
152 volume = {87},
153 doi = {10.1016/j.intell.2021.101548},
154 url = {https://linkinghub.elsevier.com/retrieve/pii/S0160289621000325},
155 langid = {en}
ben-aaron188718e3a62022-10-24 14:28:51 +0200156}