| library(caret) |
| library(tidyverse) |
| library(DMwR) |
| library(randomForest) |
| library(FSelector) |
| # library(randomForestExplainer) |
| # may need to: options(expressions = 5e5) to avoid stackoverflow for installing package |
| |
| set.seed(42) |
| |
| ngramfilegold1<-"goldstandard01_anno_ml_synfeat_nstop1" |
| ngramfilegold2<-"gold03_anno_ml_synfeat_nstopw" |
| ngramfiletest<-"wikilist_cleanup_syn" |
| setwd(dirname(rstudioapi::getSourceEditorContext()$path)) |
| stopwords <- readLines(con = "../data/stopwords.txt",encoding="UTF-8") |
| oringramme1 <- read.csv(paste("../data/",ngramfilegold1,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE) |
| oringramme2 <- read.csv(paste("../data/",ngramfilegold2,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE) |
| oringrammetest <- read.csv(paste("../data/",ngramfiletest,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE) |
| syfeaturenames <- read.csv("../data/syfeatures.tsv", header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE) |
| featurenames <- read.csv("../data/features.tsv", header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE) |
| |
| deleteStopwords = function(wl, stopwords = NULL) { |
| wl[!(wl %in% stopwords)] |
| } |
| |
| oringramme1 <- oringramme1 %>% |
| mutate(CO_IDIOM = ifelse(is.na(CO_IDIOM),0,CO_IDIOM)) %>% # treat NAs as 0 |
| filter(CO_IDIOM < 2) # just two classes: 0 no idiom, 1 idiom |
| |
| oringramme2 <- oringramme2 %>% |
| mutate(CO_IDIOM = ifelse(is.na(CO_IDIOM),0,CO_IDIOM)) %>% # treat NAs as 0 |
| filter(CO_IDIOM < 2) # just two classes: 0 no idiom, 1 idiom |
| |
| # feature sets |
| |
| sy_w_vars <- c("SY_W_AVG","SY_W_CON","SY_W_MAX","SY_W_NSUM","SY_W_NSUM_AF")# sy_w_vars_1 <- c("SY_W_AVG","SY_W_CON","SY_W_MAX","SY_W_NSUM") |
| sy_r_vars <- c("SY_C1_R","SY_W_R1","SY_W_R2","SY_R_D") |
| sy_c1_vars_1 <- c("SY_C1_LD","SY_C1_LDAF","SY_C1_LL","SY_C1_MI","SY_C1_MI3") |
| o_vars_1 <- c("O_NSTOPW","O_GRAM") |
| sy_vars <- c(sy_c1_vars_1, sy_w_vars, sy_r_vars,o_vars_1) |
| |
| sy_featurenames<-subset(featurenames,newnames %in% sy_vars) |
| |
| # Reduce number of classes, treat null values, add NSTOPW, change names for SY features and rename all features |
| # new featurenames. |
| |
| ngramme1 <- oringramme1 %>% |
| add_column(NSTOPW = sapply(oringramme1$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>% |
| add_column(nstokens = sapply(oringramme1$tokens, function(x) paste(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords),collapse=" "))) %>% |
| # select(-matches("CO_TOKEN.*"), -tokens) %>% |
| add_column(CO_GRAM = sapply(oringramme1$tokens, function(x) length(unlist(strsplit(x," ")))))%>% |
| select(-matches("CO_TOKEN.*")) %>% # keep tokens for interpretability |
| mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>% |
| mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>% |
| rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>% |
| rename_at(featurenames$oldnames, ~ featurenames[featurenames$oldnames==.x,]$newnames ) %>% |
| mutate(across(everything(), ~ replace_na(.x, 0))) %>% |
| mutate(CO_IDIOM = as.factor(if_else(CO_IDIOM == 1, "idiom", "no_idiom"))) %>% # just two classes: 0 no idiom, 1 idiom |
| add_column(GOLD = 1) %>% |
| select(c("CO_IDIOM","tokens","nstokens","GOLD",all_of(sy_vars))) |
| |
| ngramme2 <- oringramme2 %>% |
| add_column(NSTOPW = sapply(oringramme2$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>% |
| add_column(nstokens = sapply(oringramme2$tokens, function(x) paste(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords),collapse=" "))) %>% |
| # select(-matches("CO_TOKEN.*"), -tokens) %>% |
| select(-matches("CO_TOKEN.*")) %>% # keep tokens for interpretability |
| mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>% |
| mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>% |
| rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>% |
| rename_at(featurenames$oldnames, ~ featurenames[featurenames$oldnames==.x,]$newnames ) %>% |
| mutate(across(everything(), ~ replace_na(.x, 0))) %>% |
| mutate(CO_IDIOM = as.factor(if_else(CO_IDIOM == 1, "idiom", "no_idiom"))) %>% # just two classes: 0 no idiom, 1 idiom |
| add_column(GOLD = 1) %>% |
| select(c("CO_IDIOM","tokens","nstokens","GOLD",all_of(sy_vars))) |
| |
| # combine |
| |
| ngramme <- rbind(ngramme1,ngramme2[colnames(ngramme1)]) |
| # ngramme<-ngramme1 |
| # ngramme <- ngramme2[colnames(ngramme1)] |
| ngramme<-ngramme%>% distinct(nstokens,.keep_all=T) |
| |
| ngramme1<-ngramme1%>% distinct(nstokens,.keep_all=T) |
| |
| |
| # discard all ngrams with less than 2 non stopwords (no syntagmatic features possible) |
| |
| ngramme1 <- ngramme1 %>% |
| filter(O_NSTOPW > 1) |
| |
| # wiki ngrams |
| |
| wikingramme <- oringrammetest %>% |
| add_column(NSTOPW = sapply(oringrammetest$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>% |
| add_column(nstokens = sapply(oringrammetest$tokens, function(x) paste(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords),collapse=" "))) %>% |
| add_column(CO_GRAM = sapply(oringrammetest$tokens, function(x) length(unlist(strsplit(x," ")))))%>% |
| select(-c(IDIOM,KERN)) %>% # keep tokens for interpretability |
| mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>% |
| mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>% |
| rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>% |
| rename_at(sy_featurenames$oldnames, ~ sy_featurenames[sy_featurenames$oldnames==.x,]$newnames ) %>% |
| mutate(across(everything(), ~ replace_na(.x, 0))) %>% |
| add_column(CO_IDIOM = as.factor("idiom")) %>% |
| add_column(GOLD = 0) %>% |
| select(c("CO_IDIOM","tokens","nstokens","GOLD",all_of(sy_vars))) |
| |
| # remove all with NSTOPW > 1 (no syntagmatic context available) |
| |
| wikingramme <- wikingramme %>% |
| filter(O_NSTOPW > 1) |
| |
| # remove duplicates after stopword exclusion |
| |
| wikingramme <- wikingramme %>% distinct(nstokens,.keep_all=T) |
| |
| # find duplicates by lower cased tokens without stopwords |
| |
| bothngramme <- merge(ngramme[,c("tokens","nstokens","CO_IDIOM")],wikingramme[,c("tokens","nstokens","CO_IDIOM")],by="nstokens") |
| |
| # 100% agreement ;) |
| |
| # combine |
| |
| allngramme <- rbind(ngramme1,wikingramme) |
| |
| |
| # and again remove duplicates |
| |
| allngramme <- allngramme %>% distinct(nstokens,.keep_all=T) |
| |
| ngramme1 <- allngramme %>% filter(GOLD==1) |
| wikingramme <- allngramme %>% filter(GOLD==0) |
| |
| write.table(allngramme,file=paste("../data/","dataset1_wiki_noduplicates.tsv",sep=""), sep = "\t", quote=F) |
| |
| |
| # formulae for training and testing rf |
| |
| sy_fmla <- as.formula(paste("CO_IDIOM ~ ", paste(sy_vars, collapse= "+"))) |
| |
| # Train/Test split |
| |
| # Training: 80% Gold Standard, no_idiom + 100% Gold Standard, idiom |
| # Test: 20% Gold Standard, no_idiom + 100 % Wiki, idiom |
| |
| noidiomsgold <- ngramme1 %>% filter(CO_IDIOM=="no_idiom") |
| idiomsgold <- ngramme1 %>% filter(CO_IDIOM=="idiom") |
| |
| set.seed(1120) |
| trainRows <- sample(nrow(noidiomsgold), nrow(noidiomsgold)*0.8, replace = FALSE) |
| train <- rbind(noidiomsgold[trainRows,],idiomsgold) |
| test <- rbind(noidiomsgold[setdiff(1:nrow(noidiomsgold),trainRows),],wikingramme) |
| |
| cat("Random Forest\n") |
| |
| rf_classifier = randomForest(sy_fmla, train, importance=TRUE) |
| |
| prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM)) |
| |
| res <- confusionMatrix(prediction_for_table, test$CO_IDIOM, positive= "idiom",mode="everything") |
| print(res) |
| collected_results <- bind_cols("rf" = res$byClass) |
| |
| # Sensitivity is recall of class 1 |
| # Pos Pred Value is precision |
| varImpPlot(rf_classifier) |
| |
| cat("Random Forest with cutoff\n") |
| prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff = c(0.05, 0.95)) |
| res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom",mode="everything") |
| collected_results <- bind_cols(collected_results, "rf with cutoff" = res$byClass) |
| print(res) |
| |
| cat("With SMOTE resampled training data\n") |
| smoted.data <- SMOTE(fmlasy, subset(train, select = c("CO_IDIOM", syvars)), perc.over = 1200, perc.under = 100) |
| rf_classifier = randomForest(fmlasy, smoted.data, importance=TRUE) |
| prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM)) |
| res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom") |
| collected_results <- bind_cols(collected_results, "rf with SMOTE" = res$byClass) |
| print(res) |
| |
| cat("With SMOTE and cutoff\n") |
| prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff = c(0.2, 0.8)) |
| res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom") |
| collected_results <- bind_cols(collected_results, "rf with SMOTE and cutoff" = res$byClass) |
| print(res) |
| |
| collected_results <- collected_results %>% |
| round(3) %>% |
| add_column(measure = names(res$byClass)) %>% |
| column_to_rownames("measure") |
| |
| View(collected_results) |
| |
| |
| # Analysing tradeoff between Fscore, Recall, Precision for various cutoffs |
| # full range from precision almost 100% to recall almost 100% |
| rf_classifier = randomForest(sy_fmla, train, importance=TRUE) |
| cvaluesw<-tibble() |
| for (c in c(seq(from=0.4,to=0.99,by=0.025),0.999)) { |
| prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM), cutoff = c(1-c, c)) |
| conf<-confusionMatrix(prediction_for_table, test$CO_IDIOM, positive = "idiom") |
| cvaluesw <-bind_rows(cvaluesw, c(cutoff=c, conf$byClass)) |
| } |
| cvaluesw %>% |
| select(c("cutoff", "Recall", "Precision", "F1", "Specificity", "Balanced Accuracy")) %>% |
| pivot_longer(!cutoff, names_to=c("measure")) %>% |
| ggplot(aes(cutoff, value, colour=measure)) + geom_line(size=1) + |
| scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) + |
| scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) |
| |
| |
| # Using estimates by random forest on entire dataset |
| |
| library(randomForest) |
| rf_classifier_full = randomForest(fmlasy, data=allngramme, importance=TRUE) |
| rf_classifier_full |
| # class.error is 1 - recall |
| varImpPlot(rf_classifier_full) |
| |
| # Feature ranking |
| |
| # rf features as table |
| |
| # correlated features seem to split their rankings |
| |
| rfranks<-importance(rf_classifier_full)[,3:4] |
| |
| # ttest |
| |
| idioms<-ngramme %>% filter(CO_IDIOM == "idiom") |
| nonidioms<-ngramme %>% filter(CO_IDIOM != "idiom") |
| |
| ttestPvalues<-sapply(syvars, |
| function(sel) t.test(idioms[sel],nonidioms[sel])$p.value) |
| |
| # information gain |
| # multiply by 1000 to avoid undersized bins |
| # features are ranked individually no matter their correlation |
| igain<-information.gain(fmlasy, data=ngramme%>%mutate_at(syvars, ~ . * 1000),unit="log2") |
| |
| featureRanks<-cbind(rfranks,igain,ttestPvalues) |
| |
| #randomForestExplainer::explain_forest(rf_classifier ) |
| |
| # averate estimates and feature ranks over 10 runs |
| |
| errrate<-0 |
| conf<-matrix(0,2,3) |
| featureRanks<-matrix(0,4,length(vars)) |
| for (i in 1:10) { |
| rfc =randomForest(fmlasy, data=ngramme, importance=TRUE) |
| #rfc =randomForest(fmlasy, data=ngramme, importance=TRUE, cutoff=c(0.2, 0.8)) |
| errrate<-errrate+rfc$err.rate[100,1] |
| conf<-conf+rfc$confusion |
| featureRanks<-featureRanks+ |
| cbind(importance(rfc)[,3:4], |
| information.gain(fmlasy, data=ngramme%>%mutate_at(syvars, ~ . * 1000),unit="log2"), |
| sapply(syvars, |
| function(sel) t.test(idioms[sel],nonidioms[sel])$p.value)) |
| print(errrate/i) |
| conf1<-round( |
| rbind( |
| cbind(conf[,1:2]/i,(1-conf[,3]/i)*100), |
| c(100*diag(conf[,1:2])/colSums(conf[,1:2]),NA), |
| c(rowSums(conf[,1:2]/i),NA)),digits=2) |
| colnames(conf1)<-c("1","0","rec") |
| rownames(conf1)<-c("1","0","prec","sum") |
| print(conf1) |
| } |
| featureRanks<-featureRanks/10 |
| colnames(featureRanks)<-c("MeanDecreaseAccuracy","MeanDecreaseGini","InformationGain","Ttest") |
| |
| |
| |
| |