blob: 1fce86cddc7fdf6374941207c8c7c16545672f6e [file] [log] [blame]
library(caret)
library(tidyverse)
library(DMwR)
library(randomForest)
library(FSelector)
# library(randomForestExplainer)
# may need to: options(expressions = 5e5) to avoid stackoverflow for installing package
set.seed(42)
ngramfilegold<-"goldstandard01_anno_ml_synfeat_nstop1"
ngramfiletest<-"wikilist_cleanup_syn"
setwd(dirname(rstudioapi::getSourceEditorContext()$path))
stopwords <- readLines(con = "../data/stopwords.txt",encoding="UTF-8")
oringramme <- read.csv(paste("../data/",ngramfilegold,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE)
oringrammetest <- read.csv(paste("../data/",ngramfiletest,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE)
syfeaturenames <- read.csv("../data/syfeatures.tsv", header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE)
# syfeaturenames$navalue<-sapply(syfeaturenames$navalue,as.numeric)
deleteStopwords = function(wl, stopwords = NULL) {
wl[!(wl %in% stopwords)]
}
# featuresets
covars <- c("CO_LL", "CO_Z", "CO_G", "CO_T", "CO_LOGDICE", "CO_PMI", "CO_MI3", "CO_DEREKO", "CO_SGT", "CO_WIN5_VEC","CO_WIN5_VEC_AUTOSEM")
syvars <- c(syfeaturenames$synames,"NSTOPW")
vars <- c(covars,syvars)
oringramme <- oringramme %>%
mutate(CO_IDIOM = ifelse(is.na(CO_IDIOM),0,CO_IDIOM)) %>%
filter(CO_IDIOM < 2) # just two classes: 0 no idiom, 1 idiom
# Reduce number of classes, treat null values, add NSTOPW, change names for SY features
ngramme <- oringramme %>%
add_column(NSTOPW = sapply(oringramme$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>%
add_column(nstokens = sapply(oringramme$tokens, function(x) paste(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords),collapse=" "))) %>%
# select(-matches("CO_TOKEN.*"), -tokens) %>%
select(-matches("CO_TOKEN.*")) %>% # keep tokens for interpretability
mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>%
mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>%
rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>%
mutate(across(everything(), ~ replace_na(.x, 0))) %>%
mutate(CO_IDIOM = as.factor(if_else(CO_IDIOM == 1, "idiom", "no_idiom"))) %>% # just two classes: 0 no idiom, 1 idiom
add_column(GOLD=1) %>%
select(c("CO_IDIOM","tokens","nstokens","GOLD",all_of(syvars)))
# discard all ngrams with less than 2 non stopwords (no syntagmatic features possible)
ngramme <- ngramme %>%
filter(NSTOPW > 1)
# remove duplicates after stopword exclusion
ngramme <- ngramme %>% distinct(nstokens,.keep_all=T)
# wiki ngrams
wikingramme <- oringrammetest %>%
add_column(NSTOPW = sapply(oringrammetest$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>%
add_column(nstokens = sapply(oringrammetest$tokens, function(x) paste(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords),collapse=" "))) %>%
# select(-matches("CO_TOKEN.*"), -tokens) %>%
select(-c(IDIOM,KERN)) %>% # keep tokens for interpretability
mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>%
mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>%
rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>%
mutate(across(everything(), ~ replace_na(.x, 0))) %>%
add_column(CO_IDIOM = as.factor("idiom")) %>%
add_column(GOLD = 0) %>%
select(c("CO_IDIOM","tokens","nstokens","GOLD",all_of(syvars)))
# remove all with NSTOPW > 1 (no syntagmatic context available)
wikingramme <- wikingramme %>%
filter(NSTOPW > 1)
# remove duplicates after stopword exclusion
wikingramme <- wikingramme %>% distinct(nstokens,.keep_all=T)
# find duplicates by lower cased tokens without stopwords
bothngramme <- merge(ngramme[,c("tokens","nstokens","CO_IDIOM")],wikingramme[,c("tokens","nstokens","CO_IDIOM")],by="nstokens")
# 100% agreement ;)
# combine
allngramme <- rbind(ngramme,wikingramme)
# and again remove duplicates
allngramme <- allngramme %>% distinct(nstokens,.keep_all=T)
ngramme <- allngramme %>% filter(GOLD==1)
wikingramme <- allngramme %>% filter(GOLD==0)
# formulae for training and testing rf
fmla <- as.formula(paste("CO_IDIOM ~ ", paste(vars, collapse= "+")))
fmlaco <- as.formula(paste("CO_IDIOM ~ ", paste(covars, collapse= "+")))
fmlasy <- as.formula(paste("CO_IDIOM ~ ", paste(syvars, collapse= "+")))
# Train/Test split
# Training: 80% Gold Standard, no_idiom + 100% Gold Standard, idiom
# Test: 20% Gold Standard, no_idiom + 100 % Wiki, idiom
noidiomsgold <- ngramme %>% filter(CO_IDIOM=="no_idiom")
idiomsgold <- ngramme %>% filter(CO_IDIOM=="idiom")
trainRows <- sample(nrow(noidiomsgold), nrow(noidiomsgold)*0.8, replace = FALSE)
train <- rbind(noidiomsgold[trainRows,],idiomsgold)
test <- rbind(noidiomsgold[setdiff(1:nrow(noidiomsgold),trainRows),],wikingramme)
cat("Random Forest\n")
rf_classifier = randomForest(fmlasy, train, importance=TRUE)
prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM))
res <- confusionMatrix(prediction_for_table, test$CO_IDIOM, positive= "idiom")
print(res)
collected_results <- bind_cols("rf" = res$byClass)
# Sensitivity is recall of class 1
# Pos Pred Value is precision
varImpPlot(rf_classifier)
cat("Random Forest with cutoff\n")
prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff = c(0.2, 0.8))
res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom")
collected_results <- bind_cols(collected_results, "rf with cutoff" = res$byClass)
print(res)
cat("With SMOTE resampled training data\n")
smoted.data <- SMOTE(fmlasy, subset(train, select = c("CO_IDIOM", syvars)), perc.over = 1200, perc.under = 100)
rf_classifier = randomForest(fmlasy, smoted.data, importance=TRUE)
prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM))
res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom")
collected_results <- bind_cols(collected_results, "rf with SMOTE" = res$byClass)
print(res)
cat("With SMOTE and cutoff\n")
prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff = c(0.2, 0.8))
res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "idiom")
collected_results <- bind_cols(collected_results, "rf with SMOTE and cutoff" = res$byClass)
print(res)
collected_results <- collected_results %>%
round(3) %>%
add_column(measure = names(res$byClass)) %>%
column_to_rownames("measure")
View(collected_results)
# Analysing tradeoff between Fscore, Recall, Precision for various cutoffs
# full range from precision almost 100% to recall almost 100%
rf_classifier = randomForest(fmlasy, train, importance=TRUE)
cvalues<-tibble()
for (c in c(seq(from=0.4,to=0.99,by=0.025),0.999)) {
prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM), cutoff = c(1-c, c))
conf<-confusionMatrix(prediction_for_table, test$CO_IDIOM, positive = "idiom")
cvalues <-bind_rows(cvalues, c(cutoff=c, conf$byClass))
}
cvalues %>%
select(c("cutoff", "Recall", "Precision", "F1", "Specificity", "Balanced Accuracy")) %>%
pivot_longer(!cutoff, names_to=c("measure")) %>%
ggplot(aes(cutoff, value, colour=measure)) + geom_line() +
scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10))
# Using estimates by random forest on entire dataset
library(randomForest)
rf_classifier_full = randomForest(fmlasy, data=allngramme, importance=TRUE)
rf_classifier_full
# class.error is 1 - recall
varImpPlot(rf_classifier_full)
# Feature ranking
# rf features as table
# correlated features seem to split their rankings
rfranks<-importance(rf_classifier_full)[,3:4]
# ttest
idioms<-ngramme %>% filter(CO_IDIOM == "idiom")
nonidioms<-ngramme %>% filter(CO_IDIOM != "idiom")
ttestPvalues<-sapply(syvars,
function(sel) t.test(idioms[sel],nonidioms[sel])$p.value)
# information gain
# multiply by 1000 to avoid undersized bins
# features are ranked individually no matter their correlation
igain<-information.gain(fmlasy, data=ngramme%>%mutate_at(syvars, ~ . * 1000),unit="log2")
featureRanks<-cbind(rfranks,igain,ttestPvalues)
#randomForestExplainer::explain_forest(rf_classifier )
# averate estimates and feature ranks over 10 runs
errrate<-0
conf<-matrix(0,2,3)
featureRanks<-matrix(0,4,length(vars))
for (i in 1:10) {
rfc =randomForest(fmlasy, data=ngramme, importance=TRUE)
#rfc =randomForest(fmlasy, data=ngramme, importance=TRUE, cutoff=c(0.2, 0.8))
errrate<-errrate+rfc$err.rate[100,1]
conf<-conf+rfc$confusion
featureRanks<-featureRanks+
cbind(importance(rfc)[,3:4],
information.gain(fmlasy, data=ngramme%>%mutate_at(syvars, ~ . * 1000),unit="log2"),
sapply(syvars,
function(sel) t.test(idioms[sel],nonidioms[sel])$p.value))
print(errrate/i)
conf1<-round(
rbind(
cbind(conf[,1:2]/i,(1-conf[,3]/i)*100),
c(100*diag(conf[,1:2])/colSums(conf[,1:2]),NA),
c(rowSums(conf[,1:2]/i),NA)),digits=2)
colnames(conf1)<-c("1","0","rec")
rownames(conf1)<-c("1","0","prec","sum")
print(conf1)
}
featureRanks<-featureRanks/10
colnames(featureRanks)<-c("MeanDecreaseAccuracy","MeanDecreaseGini","InformationGain","Ttest")