blob: 7a591b7a8e6cd56d8db1717e9d7cc88de57b0f81 [file] [log] [blame]
Marc Kupietzc3bf3502021-02-19 17:18:57 +01001library(caret)
2library(tidyverse)
3library(DMwR)
4library(randomForest)
5library(FSelector)
6# library(randomForestExplainer)
7# may need to: options(expressions = 5e5) to avoid stackoverflow for installing package
8
Marc Kupietz358a2962021-02-22 07:55:49 +01009set.seed(42)
10
PeterFankhauserIDSed93d2e2021-02-20 14:51:13 +010011# Test
12
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010013ngramfile<-"gold03_anno_ml_synfeat_nstopw"
14
Marc Kupietzc3bf3502021-02-19 17:18:57 +010015setwd(dirname(rstudioapi::getSourceEditorContext()$path))
16stopwords <- readLines(con = "../data/stopwords.txt",encoding="UTF-8")
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010017oringramme <- read.csv(paste("../data/",ngramfile,".csv",sep=""), header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE)
Marc Kupietzc3bf3502021-02-19 17:18:57 +010018syfeaturenames <- read.csv("../data/syfeatures.tsv", header = TRUE, sep = "\t", dec=".", quote="", encoding="UTF-8",stringsAsFactors=FALSE)
19# syfeaturenames$navalue<-sapply(syfeaturenames$navalue,as.numeric)
20
21deleteStopwords = function(wl, stopwords = NULL) {
22 wl[!(wl %in% stopwords)]
23}
24
Marc Kupietz631800f2021-02-19 17:27:26 +010025oringramme <- oringramme %>%
26 filter(CO_IDIOM < 2) # just two classes: 0 no idiom, 1 idiom
27
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010028# Reduce number of classes, treat null values, add NSTOPW, change names for SY features
29
Marc Kupietzc3bf3502021-02-19 17:18:57 +010030ngramme <- oringramme %>%
31 add_column(NSTOPW = sapply(oringramme$tokens,function(x) length(deleteStopwords(tolower(unlist(strsplit(x," "))),stopwords)))) %>%
32 # select(-matches("CO_TOKEN.*"), -tokens) %>%
33 select(-matches("CO_TOKEN.*")) %>% # keep tokens for interpretability
34 mutate(across(matches(".rank.*"), ~ replace_na(.x, 1000))) %>%
35 mutate(across(c("dice", "lfmd", "llr", "ld", "pmi"), ~ replace_na(.x, min(.x) - 1))) %>%
Marc Kupietzaced2702021-02-19 19:09:29 +010036 rename_at(syfeaturenames$innames, ~ syfeaturenames[syfeaturenames$innames==.x,]$synames ) %>%
Marc Kupietzc3bf3502021-02-19 17:18:57 +010037 mutate(across(everything(), ~ replace_na(.x, 0))) %>%
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010038 mutate(CO_IDIOM = as.factor(if_else(CO_IDIOM !=1, "0", "1"))) # just two classes: 0 no idiom, 1 idiom
39
40# Optional
41write.table(ngramme,file=paste("../data/",ngramfile,"_cosy.csv",sep=""), sep = "\t", quote=F)
42
43# featuresets
Marc Kupietzc3bf3502021-02-19 17:18:57 +010044
45covars <- c("CO_LL", "CO_Z", "CO_G", "CO_T", "CO_LOGDICE", "CO_PMI", "CO_MI3", "CO_DEREKO", "CO_SGT", "CO_WIN5_VEC","CO_WIN5_VEC_AUTOSEM")
46syvars <- c(syfeaturenames$synames,"NSTOPW")
47vars <- c(covars,syvars)
48
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010049# formulae for training and testing rf
50
Marc Kupietzc3bf3502021-02-19 17:18:57 +010051fmla <- as.formula(paste("CO_IDIOM ~ ", paste(vars, collapse= "+")))
52fmlaco <- as.formula(paste("CO_IDIOM ~ ", paste(covars, collapse= "+")))
53fmlasy <- as.formula(paste("CO_IDIOM ~ ", paste(syvars, collapse= "+")))
54
55# Simple train/test split
56
57trainRows <- sample(nrow(ngramme), nrow(ngramme)*0.8, replace = FALSE)
58train <- ngramme[trainRows,]
59test <- ngramme[setdiff(1:nrow(ngramme),trainRows),]
60
Marc Kupietz65733b22021-02-22 08:09:08 +010061cat("Random Forest without SMOTE\n")
62
Marc Kupietz13f67ed2021-02-22 07:55:03 +010063rf_classifier = randomForest(fmla, train, importance=TRUE)
Marc Kupietzc3bf3502021-02-19 17:18:57 +010064
65# only SY features
66# rf_classifier = randomForest(fmlasy, train, ntree=100, mtry=10, importance=TRUE)
67
68prediction_for_table <- predict(rf_classifier, test %>% select(-CO_IDIOM))
69
Marc Kupietz13f67ed2021-02-22 07:55:03 +010070res <- confusionMatrix(prediction_for_table, test$CO_IDIOM,positive= "1")
Marc Kupietz13f67ed2021-02-22 07:55:03 +010071print(res)
PeterFankhauserIDSc2622782021-02-21 18:10:01 +010072
73# Sensitivity is recall of class 1
74# Pos Pred Value is precision
Marc Kupietzc3bf3502021-02-19 17:18:57 +010075varImpPlot(rf_classifier)
76
Marc Kupietz65733b22021-02-22 08:09:08 +010077cat("With SMOTE resampled training data\n")
Marc Kupietzc3bf3502021-02-19 17:18:57 +010078
79smoted.data <- SMOTE(fmla, subset(train, select = c("CO_IDIOM", vars)), perc.over = 1200, perc.under = 100)
Marc Kupietz13f67ed2021-02-22 07:55:03 +010080rf_classifier = randomForest(fmla, smoted.data, importance=TRUE)
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010081prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM))
Marc Kupietz13f67ed2021-02-22 07:55:03 +010082res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "1")
Marc Kupietz13f67ed2021-02-22 07:55:03 +010083print(res)
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010084
Marc Kupietz1be40eb2021-02-22 08:10:29 +010085cat("With SMOTE and detection task oriented cutoff for prediction\n")
86
87prediction_for_table <- predict(rf_classifier,test %>% select(-CO_IDIOM), cutoff = c(0.8, 0.2))
88res <- confusionMatrix(prediction_for_table,test$CO_IDIOM, positive = "1")
89print(res)
90
91
Marc Kupietzc3bf3502021-02-19 17:18:57 +010092# Using estimates by random forest on entire dataset
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010093
Marc Kupietzc3bf3502021-02-19 17:18:57 +010094library(randomForest)
Marc Kupietz13f67ed2021-02-22 07:55:03 +010095rf_classifier_full = randomForest(fmla, data=ngramme, importance=TRUE)
Marc Kupietzc3bf3502021-02-19 17:18:57 +010096rf_classifier_full
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +010097# class.error is 1 - recall
Marc Kupietzc3bf3502021-02-19 17:18:57 +010098varImpPlot(rf_classifier_full)
99
100# Feature ranking
101
102# rf features as table
103
104# correlated features seem to split their rankings
105
106rfranks<-importance(rf_classifier_full)[,3:4]
107
108# ttest
109
110idioms<-ngramme %>% filter(CO_IDIOM==1)
111nonidioms<-ngramme %>% filter(CO_IDIOM!=1)
112
113ttestPvalues<-sapply(vars,
114 function(sel) t.test(idioms[sel],nonidioms[sel])$p.value)
115
116# information gain
117# multiply by 1000 to avoid undersized bins
118# features are ranked individually not matter their correlation
119igain<-information.gain(fmla, data=ngramme%>%mutate_at(vars, ~ . * 1000),unit="log2")
120
121featureRanks<-cbind(rfranks,igain,ttestPvalues)
122
123#randomForestExplainer::explain_forest(rf_classifier )
124
125# averate estimates and feature ranks over 10 runs
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +0100126
Marc Kupietzc3bf3502021-02-19 17:18:57 +0100127errrate<-0
128conf<-matrix(0,2,3)
129featureRanks<-matrix(0,4,length(vars))
130for (i in 1:10) {
Marc Kupietz13f67ed2021-02-22 07:55:03 +0100131 rfc =randomForest(fmla, data=ngramme, importance=TRUE)
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +0100132 #rfc =randomForest(fmla, data=ngramme, ntree=100, importance=TRUE, cutoff=c(0.8,0.2))
Marc Kupietzc3bf3502021-02-19 17:18:57 +0100133 errrate<-errrate+rfc$err.rate[100,1]
134 conf<-conf+rfc$confusion
135 featureRanks<-featureRanks+
136 cbind(importance(rfc)[,3:4],
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +0100137 information.gain(fmla, data=ngramme%>%mutate_at(vars, ~ . * 1000),unit="log2"),
Marc Kupietzc3bf3502021-02-19 17:18:57 +0100138 sapply(vars,
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +0100139 function(sel) t.test(idioms[sel],nonidioms[sel])$p.value))
Marc Kupietzc3bf3502021-02-19 17:18:57 +0100140 print(errrate/i)
141 conf1<-round(
142 rbind(
143 cbind(conf[,1:2]/i,(1-conf[,3]/i)*100),
144 c(100*diag(conf[,1:2])/colSums(conf[,1:2]),NA),
145 c(rowSums(conf[,1:2]/i),NA)),digits=2)
146 colnames(conf1)<-c("0","1","rec")
147 rownames(conf1)<-c("0","1","prec","sum")
148 print(conf1)
149}
150featureRanks<-featureRanks/10
PeterFankhauserIDSd1f3df82021-02-20 14:44:01 +0100151colnames(featureRanks)<-c("MeanDecreaseAccuracy","MeanDecreaseGini","InformationGain","Ttest")
Marc Kupietzc3bf3502021-02-19 17:18:57 +0100152
153
154
155