PeterFankhauserIDS | 7cad9b7 | 2021-02-20 15:47:14 +0100 | [diff] [blame^] | 1 | # Get classic and w2v based collocates from DeReKoVecs API |
| 2 | # |
| 3 | # Have a look at the web gui column header mouse overs to figure out what the columns mean: |
| 4 | # http://corpora.ids-mannheim.de/openlab/derekovecs?word=triftiger&cutoff=500000&n=100&N=2000#tabs-3 |
| 5 | |
| 6 | library(httr) |
| 7 | library(tidyverse) |
| 8 | |
| 9 | stopwords <- readLines(con = "../data/stopwords.txt",encoding="UTF-8") |
| 10 | |
| 11 | # ngramme <- read.csv("../data/gold03_anno_ml.csv", quote="", header = TRUE, sep = "\t", dec=",", encoding="UTF-8") |
| 12 | |
| 13 | ngramme <- read.csv("../data/goldstandard01_anno_ml.tsv", quote="", header = TRUE, sep = "\t", dec=",", encoding="UTF-8") |
| 14 | |
| 15 | |
| 16 | ngramme[, c(7:23)] <- sapply(ngramme[, c(7:23)], as.numeric) |
| 17 | |
| 18 | DeReKoVecsCall <- function(wordform = "Grund", cutoff = 500000, n = 100) { |
| 19 | params = list(word = wordform, cutoff = cutoff, n = n, json = 1) |
| 20 | response <- tryCatch({httr::GET(url = 'http://korap-worker-04:5673', query = params,timeout(10))}, |
| 21 | error=function(cond) return(NA)) |
| 22 | if(!is.na(response)) { |
| 23 | content(response, as = 'parsed', type = 'application/json', simplifyDataFrame = TRUE) |
| 24 | } |
| 25 | else { |
| 26 | return(NA) |
| 27 | } |
| 28 | } |
| 29 | |
| 30 | getW2VCollocates <- function(wordform = "Grund", ...) { |
| 31 | ret<-DeReKoVecsCall(wordform, ...) |
| 32 | if(!is.na(ret)) ret$collocators |
| 33 | else NA |
| 34 | } |
| 35 | |
| 36 | getClassicCollocates <- function(wordform = "Grund") { |
| 37 | response <- tryCatch({httr::GET(url = 'http://korap-worker-04:5673/getClassicCollocators', query = list(w=wordform),timeout(10))}, |
| 38 | error=function(cond) return(NA)) |
| 39 | if(!is.na(response)) { |
| 40 | content(response, as = 'parsed', type = 'application/json', simplifyDataFrame = TRUE)$collocates |
| 41 | } |
| 42 | else { |
| 43 | return(NA) |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | |
| 48 | getBoth <- function(wordform = "Schmetterlinge") { |
| 49 | w2v <- getW2VCollocates(wordform) |
| 50 | classic <- getClassicCollocates(wordform) |
| 51 | if (length(w2v)>0 && length(classic>0) && !is.na(w2v) && !is.na(classic)) { |
| 52 | merge(classic,w2v,by="word",all=TRUE) |
| 53 | } |
| 54 | else { |
| 55 | return(NA) |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | getRanks <- function(collocates,NApenalty=1000) { |
| 60 | if (is.na(collocates)) { |
| 61 | return(NA) |
| 62 | } |
| 63 | both <<- |
| 64 | collocates %>% |
| 65 | arrange(desc(cprob)) %>% |
| 66 | mutate(w2v.rank = 1:nrow(.)) %>% |
| 67 | mutate(w2v.rank = ifelse(is.na(cprob), NApenalty, w2v.rank)) %>% |
| 68 | arrange(desc(prob)) %>% |
| 69 | mutate(w2v.rank1 = 1:nrow(.)) %>% |
| 70 | mutate(w2v.rank1 = ifelse(is.na(prob), NApenalty, w2v.rank1)) %>% |
| 71 | arrange(desc(ld)) %>% |
| 72 | mutate(classic.rank = 1:nrow(.)) %>% |
| 73 | mutate(classic.rank = ifelse(is.na(ld), NApenalty, classic.rank)) |
| 74 | return(both) |
| 75 | } |
| 76 | |
| 77 | # rankDiff with precalculated collocates |
| 78 | |
| 79 | rankDiff1 <- function(wordform = "Schmetterlinge", collocate = "Bauch", both) { |
| 80 | if (is.na(both)) { |
| 81 | return(NA) |
| 82 | } |
| 83 | if (! collocate %in% both$word) |
| 84 | return(NA) |
| 85 | w2vRank <- both[both$word==collocate,]$w2v.rank |
| 86 | classicRank <- both[both$word==collocate,]$classic.rank |
| 87 | if (is.numeric(w2vRank) && is.numeric(classicRank)) {w2vRank - classicRank} |
| 88 | else {NA} |
| 89 | } |
| 90 | |
| 91 | featurenames<-c("af", "dice","ld","lfmd","llfmd","llr","lnpmi" ,"md","npmi","pmi","rlfmd","rnpmi","average","cprob","max","overall","prob","w2v.rank","w2v.rank1", "classic.rank") |
| 92 | |
| 93 | getFeatures <- function(wordform = "Schmetterlinge", collocate = "Bauch", both) { |
| 94 | if (is.na(both)) { |
| 95 | return(as.numeric(rep(c(featurenames[0], NA), length(featurenames)+1))) |
| 96 | } |
| 97 | if (! collocate %in% both$word) |
| 98 | return(as.numeric(rep(c(featurenames[0], NA), length(featurenames)+1))) |
| 99 | features<-both[both$word==collocate,] |
| 100 | w2vRank <- features$w2v.rank |
| 101 | classicRank <- features$classic.rank |
| 102 | rankDiff<-NA |
| 103 | if (is.numeric(w2vRank) && is.numeric(classicRank)) {rankDiff<-w2vRank - classicRank} |
| 104 | return(as.numeric(unlist(c(rankDiff,features[1,featurenames])))) |
| 105 | } |
| 106 | |
| 107 | #w2v <- getW2VCollocates("triftiger") |
| 108 | #classic <- getClassicCollocates("triftiger") |
| 109 | #rankDiff("Schmetterlinge", "Bauch") |
| 110 | |
| 111 | firstup <- function(x) { |
| 112 | substr(x, 1, 1) <- toupper(substr(x, 1, 1)) |
| 113 | x |
| 114 | } |
| 115 | |
| 116 | # rankDiffCase with precalculated collocates |
| 117 | |
| 118 | rankDiffCase1<-function(wordform="Schmetterlinge",collocate="Bauch",collocates1,collocates2) { |
| 119 | if (wordform=="" || collocate=="") { |
| 120 | return(NA) |
| 121 | } |
| 122 | ret<-rankDiff1(wordform,collocate,collocates1) |
| 123 | if (is.na(ret)) { |
| 124 | ret<- rankDiff1(firstup(wordform),collocate,collocates2) |
| 125 | if (is.na(ret)) { |
| 126 | ret <- rankDiff1(wordform, firstup(collocate),collocates1) |
| 127 | if (is.na(ret)) { |
| 128 | ret <- rankDiff1(firstup(wordform),firstup(collocate),collocates2) |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | return(ret) |
| 133 | } |
| 134 | |
| 135 | getFeaturesCase<-function(wordform="Schmetterlinge",collocate="Bauch",collocates1,collocates2) { |
| 136 | if (wordform=="" || collocate=="") { |
| 137 | return(NA) |
| 138 | } |
| 139 | ret1<-getFeatures(wordform,collocate,collocates1) |
| 140 | ret2<-getFeatures(firstup(wordform),collocate,collocates2) |
| 141 | ret3<-getFeatures(wordform,firstup(collocate),collocates1) |
| 142 | ret4<-getFeatures(firstup(wordform),firstup(collocate),collocates2) |
| 143 | ret<-rbind(ret1,ret2,ret3,ret4) |
| 144 | colnames(ret)<-c("rankDiff",featurenames) |
| 145 | colMeans(ret,na.rm=TRUE) |
| 146 | } |
| 147 | |
| 148 | # get rid of some "offending" characters |
| 149 | |
| 150 | cleanUp<-function(str) { |
| 151 | ret<-str_replace_all(str,"[^[:alnum:]]"," ") |
| 152 | ret<-str_replace_all(ret,"[\n\r\t]"," ") |
| 153 | ret<-str_replace_all(ret,"[ ]+"," ") |
| 154 | ret<-str_replace_all(ret,"^ ","") |
| 155 | ret<-str_replace_all(ret, " $","") |
| 156 | ret |
| 157 | } |
| 158 | |
| 159 | cleanUpV<-Vectorize(cleanUp) |
| 160 | |
| 161 | deleteStopwords = function(wl, stopwords = NULL) { |
| 162 | wl[!(wl %in% stopwords)] |
| 163 | } |
| 164 | |
| 165 | ngramme$tokens <- cleanUpV(paste(ngramme$CO_TOKEN1, ngramme$CO_TOKEN2,ngramme$CO_TOKEN3,ngramme$CO_TOKEN4,ngramme$CO_TOKEN5,ngramme$CO_TOKENS6,sep=" ")) |
| 166 | |
| 167 | # retrieve collocates only once per token. |
| 168 | |
| 169 | avgRankDiffCaseLinear<-function(wordlist) { |
| 170 | wl<-deleteStopwords(tolower(unlist(strsplit(wordlist," "))),stopwords) |
| 171 | sum<-0 |
| 172 | count<-0 |
| 173 | if (length(wl)>1) { |
| 174 | for (i in 1:length(wl)) { |
| 175 | collocates1<-getRanks(getBoth(wl[i])) |
| 176 | collocates2<-getRanks(getBoth(firstup(wl[i]))) |
| 177 | for(j in 1:length(wl)) { |
| 178 | if (i!=j) { |
| 179 | rd<-rankDiffCase1(wl[i],wl[j],collocates1,collocates2) |
| 180 | if (!is.na(rd)) { |
| 181 | sum=sum+rd |
| 182 | count=count+1 |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | ret<-ifelse(count>0,sum/count,NA) |
| 189 | print(paste(wordlist, ": ", ret)) |
| 190 | return(ret) |
| 191 | } |
| 192 | |
| 193 | avgRankDiffCaseLinearV<-Vectorize(avgRankDiffCaseLinear) |
| 194 | |
| 195 | |
| 196 | avgFeaturesCaseLinear<-function(wordlist) { |
| 197 | wl<-deleteStopwords(tolower(unlist(strsplit(wordlist," "))),stopwords) |
| 198 | ret<- data.frame(matrix(ncol = length(featurenames)+1, nrow = 0)) |
| 199 | if (length(wl)>1) { |
| 200 | for (i in 1:length(wl)) { |
| 201 | collocates1<-getRanks(getBoth(wl[i])) |
| 202 | collocates2<-getRanks(getBoth(firstup(wl[i]))) |
| 203 | for(j in 1:length(wl)) { |
| 204 | if (i!=j) { |
| 205 | ret<-rbind(ret,getFeaturesCase(wl[i],wl[j],collocates1,collocates2)) |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | colnames(ret)<-c("rankDiff",featurenames) |
| 211 | mret<-colMeans(ret,na.rm=TRUE) |
| 212 | print(paste(c(wordlist, ": ", mret))) |
| 213 | return(mret) |
| 214 | } |
| 215 | |
| 216 | ngramme[,c("rankDiff",featurenames)]<-t(sapply(ngramme$tokens,avgFeaturesCaseLinear)) |
| 217 | write.table(ngramme,file="../data/goldstandard01_anno_ml_synfeat_nstop1.tsv", sep = "\t",quote=F) |
| 218 | |